目前國內外均提出了人工智能治理的相關規範,但目前我國仍缺乏新一代人工智能治理的 具體工作框架。應整合社會各界對AI社會技術複合體的離散性認知,實現對AI係統生態主權調適,突破AI包容審慎實踐的探索,建立我國的統一治理框架。
建立基於“邏輯-秩序-監管“的人工智能治理工作框架
多模態數據具有異構性 多模態數據的關聯難度表示較大 多模態知識融合困難 多模態問答大多隻能處理簡單的問題 多模態知識問答推理能力弱 可解釋性差
穀歌CVPR 2022擁有18億參數,並使用30億的 標注圖像進行訓練,在ImageNet上取得了新的記錄90.45%,證明了視覺大模型(30億參數)在廣泛視覺問題上的有效性
OpenAI提出DALLE模型,可以根據用戶輸入的文本生成對應的圖像,Imagen模型,CogView,VQ-Diffusion 模型以及 NUWA-infinity 等效果同樣出色
告立足於算法的技術趨勢和行業應用現狀,從法律監管,倫理治理,技術治理三個層麵梳理總結國內外在算法治理方麵的實踐做法,保障算法技術創新與應用健康
受基層影像醫師學曆偏低和經驗不足等因素影響,基層影像設備診療能力並未被完全釋放,為人工智能醫學影像產品在基層落地提供巨大市場機遇
第一級銀行業金融機構未在任何業務建立模型分級方法/流程;第二級銀行業金融機構從業務和技術層麵;第三級銀行業金融機構明確模型分級原則方法和操作要求
高增長:未來五年全球人工智能市場規模平均增速將超過20%;高集中:軟件占比近40%硬件產品占比接近35%;高壁壘:滲透率還不到4%
在規劃設計階段機器學習場景中固有的不可預測性,傳達實施偏差會進一步加劇;在研發部署階段模型運行之後的動態更新缺乏足夠驗證等挑戰
構建麵向可持續發展的人工智能技術體係,推動人工智能技術可用、可靠、可信,其內涵包括提升技術安全和構建技術管理機製兩個層麵工作
企業作為落實人工智能治理原則的重要主體,形成覆蓋人工智能產品全生命周期的風險管理機製,提出了麵向可持續發展的人工智能治理基本框架
數據不完備和濫用風險突出而損害用戶的權益;人工智能算法存在固有缺陷在可解釋性魯棒性偏見歧視等方麵尚存在局限;企業人工智能管理體係不完善
調度決策外賣調度係統困住騎手;個性化推薦電商場景下的信息繭房和馬太效應;內容治理如何守護清朗健康的網絡環境;人工智能可以放心使用嗎
全球人工智能市場收支規模達850廳美元,預測,2022年該市場規模將同比增長約20%至 1017廳美元,並將於2025年突破2000廳美元大關, CAGR 達24.5%
頭部科技企業先後發布了AI治理戰略和治理體係,成立了相關委員會和工作組,聚焦企業層麵的AI治理和風險管理體係,可信AI技術和保障工具也在蓬勃發展
智能文檔處理、智能會議、知識管理、智能客服等各類企業智能應用不斷發展,全麵賦能企業辦公、管理、決策、風控、營銷、服務等各個環節
AI軟件設施在近兩年成為產業焦點,AI開源框架生態,預訓練大模型體係,AI軟件平台生態等內容都得到了長足的發展,像水電一樣成為觸手可得的普惠資源
到端的MLOps一體化工具和細分場景的專項工具都非常火熱,端到端工具追求大而全的功能集,專項工具在局部或某些場景下功能和性能較好
規模化是指整合了豐富的人工智能開發,部署,測試,運維等能力,標準化是指將異構的軟硬件環境封裝為標準化的界麵,可擴展是指可以不斷適配新的技術和工具