參數校準是機器人運動控製的基礎,本文順著從校準原理到具體實現方法的思路,詳細闡述一般差速驅動機器人輪間距校準步驟。
差速驅動機器人除了輪直徑校準,還需要校準輪間距,這裏以圖 2.1中的兩輪差速驅動機器人的運動學模型為例(完整的運動學模型分析見《兩輪差速驅動機器人運動模型及應用分析》):
橡膠輪看起來最為普通實際應用廣泛;直行被動輪被應用於室內場景;麥克納姆輪全向移動適用於室內狹窄場景;萬向輪提供滾動功能降低運動摩擦
非全向移動機器人在平麵上運動僅有2個自由度;全向移動機器人采用了麥輪/全向輪,靈活性更好;四驅四轉機器人室外非結構化場景的適應能力更強
輪式機器人底盤克納姆輪的運動機理及其麥輪平台運動過程中的受力情況,分析了電機轉速-麥輪實際運動速度-麥輪平台中心點速度之間的關係
麥輪平台的全向移動效果是通過四個麥克納姆輪協同轉動而達到的,而全向輪移動平台與之類似,也通過三或四個全向輪協同轉動而實現全向移動的
分析了全向輪平台3種常見運動模式的規律及機理,逐步詳細剖析了全向輪運動過程中CENTER點速度與全向輪實際速度,指出全向輪平台全向特性的優勢及其主要應用場景
輪式機器人底盤原理圖將四輪驅動移動機器人的運動模型簡化等效處理為兩輪差速驅動機器人的運動模型,分析了SSMR獨有的運動特性
全向移動機器人有三個自由度,意味著可以在平麵內做出任意方向平移同時自旋的動作,機器人逆時針旋轉的時候,角速度w為正,反之為負
4類機器人底盤運動路徑規劃算法是圖規劃算法,空間采樣算法,曲線插值擬合算法和仿生智能算法,曲線插值擬合算法正好與之配合生成連續性好的軌跡曲線
底盤性能包括具體導航方式,尺寸大小等;定位精度要求,工作時長等;越障和避障能力機器人底盤性能中的核心性能,關乎到後期機器人的行走姿態和工作效率
創澤方舟機器人底盤擁有強大的識別感知與分析判斷能力,利用激光雷達+超聲波雙重導航方式讓定位與導航更加精準,穩定性更強,覆蓋每一個角落
運動底盤是移動機器人的重要組成部分,完整的stm32主控硬件包括:帶霍爾編碼器的直流減速電機,電機驅動,stm32單片機開發板等配
創澤輪式移動機器人底盤應對不同高度靜止移動障礙物,多種移動策略,針對不同移動需求應對不同移動場景,精度可以保持在5cm,6°內,規劃路徑0.08s