創澤機器人
CHUANGZE ROBOT
當前位置: 首頁> 新聞資訊> 機器人知識> 京東姚霆:推理能力,正是多模態技術未來亟需突破的瓶頸

京東姚霆:推理能力,正是多模態技術未來亟需突破的瓶頸

來源: AI科技大本營編輯: 創澤時間:2020/6/14 主題: 其他[ 加盟]
打開熟悉的購物 App,在搜索欄輸入想要買的東西,有時候你會發現文字不能很好地匹配你想要找的東西,用一張圖片來搜索更簡單直接。這種“以圖搜圖”的操作基本上所有電商平台現在都支持了,效果也還不錯。以京東 App 為例,筆者在搜索框輸入下圖,得到結果如右圖所示,是筆者想要的多肉植物沒錯。


用起來很方便,但你可能不知道的是,這簡單的搜索動作背後,卻是複雜的計算機視覺技術在提供支持,甚至用到了圖像內容、文本和高層語義屬性等多個模態下的信息融合,來實現精準的以圖搜圖。

當然,拍照購隻是京東電商的眾多應用之一,跨模態技術應用還有很多,比如推薦和信息流廣告,內容審核也可以結合海量的商品圖像與對應的商品語義屬性,學習圖像語義特征表達。另外,我們在使用京東 App 時可能都有過被智能客服接待的經曆,這背後的技術,就是在任務驅動型的多輪對話中融入視覺到語言的跨模態轉換技術,讓智能客服可以自動地對用戶上傳的圖片或視頻進行自動應答。

在物流場景,京東也成功地將視頻分析技術應用於物流園區作業人員行為規範管理中,特別是針對監控視頻的站點環境、攝像頭角度和成像條件差異性較大等難點,京東采用了自研的基於局部——全局傳播網絡的通用視頻特征以及高效視頻事件時序檢測框架,並融入了跨域學習技術,實現了同時在幾百個不同的站點中全天候的作業人員操作行為實時檢測,有效地管理了物流作業人員在各個站點的工作規範。


可能會有人好奇,這背後的多模態技術在京東電商和物流場景中具體是如何實現的,多模態技術在電商和物流中還有哪些熱門的落地應用,多模態技術本身當前發展到哪一步了,目前發展遇到了哪些瓶頸,未來又將向哪些方向發展,等等。

帶著這些問題,CSDN 邀請到了京東 AI 研究院算法科學家姚霆博士,來為我們答疑解惑。


師從多媒體領域領軍人物Chong-Wah Ngo

姚霆本科和碩士畢業於中國科學技術大學,博士就讀於香港城市大學,師從 ACM 傑出科學家,也是多媒體領域的領軍人物之一 Chong-Wah Ngo 教授。博士畢業後,他加入微軟亞洲研究院任職研究員,主研計算機視覺。2018 年 6 月,姚霆加入京東 AI 研究院,擔任算法科學家,負責領導京東視覺與多媒體實驗室的視覺內容分析團隊,研究方向主要關注視頻內容理解、視覺與語言,以及大規模多媒體內容搜索。

姚霆在 CVPR/ICCV/ECCV/AAAI/SIGIR/ACM MM/TIP/TMM 等頂級會議/期刊上已發表論文 50 餘篇(引用率 3600 餘次),現任多媒體領域頂級學術期刊 IEEE Transactions on Multimedia 期刊編委。值得一提的是,姚霆還是 P3D ResNet(視頻特征學習)、LSTM-A(圖像語義屬性)、GCN-LSTM(圖像物體關係)、HIP(圖像分層解析)、X-LAN(高階注意力機製) 的作者和計算機視覺領域重要數據集MSR-VTT(視頻描述生成) 的創建人,曾帶領團隊獲得多項視頻內容理解和跨域學習競賽冠軍,是當之無愧的學術帶頭人。

實際上,姚霆不僅在學術上成果頗豐,在京東也有更多機會將實驗室的研究成果落地。

在這裏,AI 研究院計算機視覺和多媒體實驗室主要有 4 個研究方向:人臉計算、人體分析、圖像理解和視頻分析,而姚霆所帶領的視覺內容分析團隊主要關注兩個方向,即視頻內容理解和視覺與語言。前者包括從底層的針對視頻理解的神經網絡設計,視頻特征表達學習,到視頻動作/事件識別,動作定位和檢測,視頻語義分割,視頻描述生成等全棧式的分析維度,後者則集中在圖像/視頻的語義特征學習,視覺與語言的特征交互,以及跨模態的預訓練課題。

以學術研究帶動產業落地,正是姚霆所帶領的團隊要做的事,在多模態技術研究上,這支團隊一直嚐試多模態領域有所突破,比如近期該實驗室在視覺與語言方向提出了一個全新的高階注意力機製(X-linear Attention Block),首次將其融入至圖像描述生成任務中,主要的技術創新是打破了傳統注意力機製中一階的特征交互限製,通過所設計的高階注意力機製可以靈活地捕捉不同模態間高階乃至無窮階的特征交互,大大提升了視覺到語言的跨模態轉換性能。這個注意力機製在 COCO 在線測試集上達到世界領先的水平,並被 CVPR 2020 接收。

在視頻內容理解課題上,實驗室在 2019 年提出了局部——全局傳播(LGD)網絡。這種全新的神經網絡結構設計另辟蹊徑地在傳統三維卷積網絡基礎上引入了對全局信息的獨立建模,提升了視頻基礎特征的描述能力。此外,不同於現有的由人工設定的視頻網絡結構,實驗室還創新性地提出了基於可微分結構搜索的視頻網絡結構自動搜索方法(SDAS),從而在視頻數據上讓機器自動地學習和設計針對視頻內容理解的網絡結構,同時也可以在搜索過程中加入對於運行效率的約束,以定製化地搜索最優的網絡結構。


多模態表示學習、模態轉化等“老大難”問題怎麼解決?

保持技術創新的過程中,姚霆團隊很清楚地意識到,多模態在技術層麵一定繞不過一些難以解決的“老大難”問題,比如多模態表示學習、模態轉化、多模態融合、跨模態分析、跨域學習,就是幾個典型的挑戰。針對這些問題,京東其實提出了一些有效的方法,也許對相關領域的研究人員和學習者有一定借鑒意義。

在多模態表示和跨模態轉化方向,姚霆以視覺和語言方麵舉例,2017 年在圖像特征表達方麵融入了高層語義特征,以增強所生成語言描述和圖像的語義一致性;2018 年則更進一步挖掘了圖像中物體和物體間的語義空間關係,構建出物體間語義和空間的關係圖,從而促進對圖像內容的深層次理解。然而,盡管物體間關係圖有效地引入了物體間關係的語義信息,但依然無法充分表達整個圖像所包含的豐富語義,所以在 2019 年,京東又提出了一種多層次的樹形語義結構,它囊括了從語義分割後的物體實例到檢測後的物體區域再到整個圖像的不同層級之間的語義信息。通過這樣一種樹形結構,可以有效地對物體不同層次間語義關聯性進行編碼,從而最終生成更為精準的描述文本。

這一係列工作的研究脈絡基本都是圍繞著在跨模態轉化過程中不斷強調對視覺內容的理解,而語言建模部分都是采用通用的 RNN 或 Transformer 類似的結構來實現。不同於這一研究脈絡,在今年京東最新的工作中,他們在上文中提到的高階注意力機製則逐漸聚焦於視覺內容和語言建模這兩者之間的特征交互,希望可以通過不同模態間基於高階的信息交互,讓兩者成為相互促進的整體。

跨域學習也是京東另一個持續關注的研究方向。姚霆解釋到,因為跨域學習可以很好地提升模型在不同場景下的泛化能力,並且無需更多目標場景下的人工標注就能實現模型在不同域下的遷移,這與京東在各種實際場景中快速進行模型落地的需求吻合。所以,針對跨域學習,京東在廣度和深度上都有一些研究。

首先在廣度上,京東研究了如何在圖像整體特征級別、局部區域級別和像素級別進行跨域學習,使得這些跨域學習技術可以無縫地適用於圖像識別、物體檢測和語義分割這幾大任務,同時脫離開特征級別的跨域遷移,還結合生成式對抗網絡,直接在原始圖像、視頻上進行無監督跨域轉換。

在深度上,實驗室也對跨域學習框架進行了一些變革與創新,比如 2019 年提出了一個基於原型網絡的跨域學習框架(TPN,Transferrable Prototypical Networks),它可以將特征學習和目標任務的學習融為一體,有效地提升跨域學習的性能,此外,實驗室還從理論上證明了自主學習(self-learning)對於模型跨域轉換的促進作用。在今年的 CVPR 上,實驗室利用無監督聚類技術深挖目標域的內在數據結構,並利用這一信息更好地指導跨域學習,在主流的數據集 Office 和 VisDA的封閉集和開放集上均取得了 SOTA 效果,其中在 VisDA 2017 數據集上達到 87.2% 的準確率。。


多模態熱門應用之視頻分析

再進一步聊到多模態技術在應用上的進展,姚霆提到了視頻分析技術實用性非常強的熱門研究方向。京東當然也洞察到這個有潛力的方向,在視頻分析技術的各大方向均有自研的獨創性工作。

其中最基本是視頻特征表達的學習,目標在於從原始視頻數據中學習包含高層語義信息的特征向量。為此,姚霆團隊設計了幾種獨特的三維卷積網絡模型,比如偽三維卷積神經網絡和局部——全局傳播網絡。在這些特征的基礎上,實驗室還搭建了包括視頻事件檢測、視頻語義分割和視頻動作檢測的視頻理解係統,實現對視頻內容的全方位分析。與此同時,在每一個視頻分析的具體應用中,實驗室也都沉澱了相應的技術創新,比如針對視頻事件檢測提出了使用時域高斯函數對事件發生時間段進行預測的方法,同時也設計了基於網絡結構自動搜索的語義分割方法,用以達成實時的視頻語義分割;針對視頻動作檢測,提出了同時對長短時關聯性進行建模的方法,也獲得了在該領域領先的性能。


多模態熱門應用之視頻分析之視頻內容理解

視頻內容理解同樣是一個熱門的多模態研究方向。姚霆預測,在未來,視頻內容理解有兩個較為重要的發展趨勢,即無標注或弱標注視頻數據的使用,以及針對視頻特質的神經網絡設計。

首先,數據是深度學習訓練的基礎,同時也是發展視頻內容理解技術的必備條件。目前視頻內容理解係統的訓練通常依靠大量的人工標注視頻數據,這就不可避免地需要耗費時間和人力。如果可以充分利用互聯網上海量的無標注或弱標注視頻數據來進行訓練,將會突破視頻數據來源的限製,全麵提升視頻內容理解的性能。因此,無監督學習、半監督學習與弱監督學習都將成為視頻內容理解的新趨勢。

另一個方向則是針對視頻特質的神經網絡結構設計,目前視頻內容理解中所使用的網絡結構通常與圖像領域的網絡結構高度耦合,它們並不是真正為視頻而生的網絡結構,缺乏對視頻數據獨到且深刻的見解。所以,如何針對視頻數據來設計全新一代的神經網絡結構,也是視頻內容理解領域一個重要的發展趨勢。

針對跨模態分析領域,盡管視覺內容的理解可以隨著各種高性能網絡的設計和深層語義的挖掘不斷升級,視覺和語言間交互的方式也已經從傳統的一階注意力機製演化到可捕捉高階乃至無窮階信息交互的注意力機製,但視覺與語言的技術發展依然逃脫不了深度學習對於訓練數據的貪婪。

因此,如何能在海量的弱監督數據上學習更具泛化能力的視覺和語言之間本質聯係,將是下一個研究的熱潮。而一旦在這些海量的弱監督甚至於無監督數據上通過預訓練學習到了蘊含有多模態間本質聯係的模型,便可賦予它在各種視覺與語言任務上的生命力。基於此,我們最近也在數以億計的網頁上持續不斷地自動抓取視頻——語言的多模態數據,構建了視頻——語言領域首個弱監督的大規模數據集(Auto-captions on GIF dataset),並正在 ACM Multimedia 2020 上舉辦跨模態預訓練的競賽,其目的還是希望能為跨模態預訓練技術的未來發展準備好一個充分與完備的平台。

電商、物流+多模態發展空間大,突破口在哪?

盡管電商和物流業中,計算機視覺和多媒體技術已經有很多落地應用了,比如拍照購、內容審核和物流園區作業人員行為規範管理等,但在姚霆看來,縱觀整個電商和物流體係,依然有一部分業務需要人工檢驗確認步驟,還遠遠沒有達到計算機視覺和多媒體技術完全自主的階段。簡言之,當前電商、物流場景與這些技術的結合還處於局部智能化的階段,整個產業鏈並沒有得到顛覆性的革新。

“我們希望,隨著整個電商平台和供應鏈的不斷數字化,加上智能配送係統的持續發展,未來的電商、物流業務可以從計算機視覺和多媒體技術輔助的方式,逐漸轉變成為由這些技術完全主導的機器自助,乃至多機協同,在電商與物流的每一個環節上都盡可能地使用智能的方式進行全局調度,尋求更加高效智能的供應鏈。這也正是我們目前正在建設的智能供應鏈開放平台的願景,即依托人工智能技術與供應鏈係統,打造智能供應鏈產業生態,賦能現代供應鏈的生產、流通、消費三大場景。”雖然電商和物流業中多模態技術的應用還不夠成熟,但姚霆十分看好這一領域的發展空間。

多模態技術被很多人視為未來獲得真正的機器智能的途徑之一,對於這一觀點,姚霆表示不能完全認同。他認為,首先需要肯定的是,相比於隻側重單一模態的技術(比如圖像識別、動作檢測、機器翻譯等),多模態技術一定距離真正的機器智能更近一些,因為機器智能的終極目的是模擬人的智能,而人之本身對於這個世界的認識一定是視聽說的結合,這就對應著多模態技術的融合。因此,對於機器而言,隻有綜合來源於不同模態的知識才能對這個真實的世界實現全麵綜合的理解,這也正是達到真正人類級別的智能的基石之一。但是,當前的多模態技術還遠遠未達到能通向真正機器智能的水平,因為它缺乏了人的智能中最為關鍵的推理能力,這也正是多模態技術在未來亟需突破的一個瓶頸。

多模態研究曆史不長,至今沒有顛覆性的成果出現,要想獲得進一步發展,多模態技術研究將來要對準哪些突破口?

對此,姚霆也有自己的看法,“目前大部分多模態技術走的還是深度學習中拿大量的已標注多模態數據來喂深度模型的老路子,即數據驅動模型的感知計算,這就導致訓練得到的多模態模型不具備人腦一樣的推理能力,其在真實場景下的泛化能力也大大受限。如果能在現有的多模態技術中融入專家、常識知識(例如結合知識圖譜),則能利用數據與知識的聯合驅動讓多模態技術更為“智能”。同時,也可以在多模態模型訓練的過程中引入多種自監督的推理型任務,“強迫”多模態模型進行推理和思考,這也能在一定程度上讓機器去慢慢學會推理。”

此外,姚霆還指出,當前的多模態技術還是屬於狹隘的單任務學習,整個訓練和測試的過程都是在封閉和靜態的環境下進行,這就和真實世界中開放動態的應用場景存在一定的差異性。為了彌補這一差異,我們可以在訓練過程不斷結合真實世界數據的回流來持續升級多媒體模型,甚至於可以利用元學習的方式來讓模型自己學會如何認知新的多模態知識,實現適用於開放動態場景並具備終生學習能力的多模態模型。





看高清視頻,如何做到不卡頓

優酷智能檔突破“傳統自適應碼率算法”的局限,解決視頻觀看體驗中高清和流暢的矛盾

基於真實環境數據集的機器人操作仿真基準測試

通過使用仿真和量化指標,使基準測試能夠通用於許多操作領域,但又足夠具體,能夠提供係統的有關信息

億級視頻內容如何實時更新

基於內容圖譜結構化特征與索引更新平台,在結構化方麵打破傳統的數倉建模方式,以知識化、業務化、服務化為視角進行數據平台化建設,來沉澱內容、行為、關係圖譜,目前在優酷搜索、票票、大麥等場景開始進行應用

深度解析大規模參數語言模型Megatron-BERT

NVIDIA解決方案架構師王閃閃講解了BERT模型原理及其成就,NVIDIA開發的Megatron-BERT

自然語言處理技術五大技術進展和四大應用與產品

自然語言處理技術的應用和研究領域發生了許多有意義的標誌性事件,技術進展方麵主要體現在預訓練語言模型、跨語言 NLP/無監督機器翻譯、知識圖譜發展 + 對話技術融合、智能人機交互、平台廠商整合AI產品線

自然語言處理技術發展趨勢進一步推動人工智能從感知智能向認知智能的演進

下一個十年,智能人機交互、多模態融合、結合領域需求的 NLP 解決方案建設、知識圖譜結合落地場景等將會有突破性變化

中國移動室內定位白皮書

中國移動聯合產業合作夥伴發布《室內定位白皮書》,對室內定位產業發展現狀及麵臨的挑戰,深入分析了垂直行業的室內定位需求,並詳細闡述了實現室內定位的技術原理, 及室內定位評測體係

傳感器麵臨時代新機遇,未來發展將呈現哪些趨勢

機器人、無人機、自動駕駛汽車等加快落地,智慧城市深入建設,更是為傳感器產業帶來了難以估量的龐大機遇

仿人操作機器人Cosero配備7自由度機械臂裝有Kinect相機實現對目標環境的3D感知

Cosero是德國波恩大學的Sven Behnke團隊根據家庭環境中的日常操作任務而研製的一款仿人操作機器人基於深度學習方法的目標姿態估計和RGB-D SLAM等感知測量

移動式操作機器人平台Personal Robot 2可模擬開門、打台球和畫畫

機器人的學習分為三個部分的軌跡預測包括示教者的手部運動軌跡、示教者的身體移動軌跡以及被操作物體的運動軌跡

Jupiter由四輪獨立轉向的底盤和UR5機械臂組成通過SSD網絡檢測目標物體

通過2D激光雷達信息采用Hector SLAM實現機器人對地圖的感知和自主導航規劃,通過頂部的RGB-D相機采集目標物體深度和RGB圖像信息

野外自主農作物探測機器人Robotanist使用擴展卡爾曼濾波器(EKF)方法融合MTI等傳感器信息

驅動係統由4個200W無刷直流電機構成,通過50:1的空心軸減速機可以最高達2m/s的速度在玉米、高粱等農作物的地裏前進
資料獲取
機器人知識
==最新資訊==
ChatGPT:又一個“人形機器人”主題
ChatGPT快速流行,重構 AI 商業
中國機器視覺產業方麵的政策
中國機器視覺產業聚焦於中國東部沿海地區(
從CHAT-GPT到生成式AI:人工智能
工信部等十七部門印發《機器人+應用行動實
全球人工智能企業市值/估值 TOP20
必威主頁第十一期上
諧波減速器和RV減速器比較
機器人減速器:諧波減速器和RV減速器
人形機器人技術難點 高精尖技術的綜合
機器人大規模商用麵臨的痛點有四個方麵
青島市機器人產業概況:機器人企業多布局在
六大機器人產業集群的特點
機械臂-高度非線性強耦合的複雜係統
==機器人推薦==
迎賓講解服務機器人

服務機器人(迎賓、講解、導診...)

智能消毒機器人

智能消毒機器人

機器人開發平台

機器人開發平台


機器人招商Disinfection Robot機器人公司機器人應用智能醫療物聯網機器人排名機器人企業機器人政策教育機器人迎賓機器人機器人開發獨角獸消毒機器人品牌消毒機器人合理用藥地圖
版權所有 必威主頁中國運營中心:北京 清華科技園九號樓5層 中國生產中心:山東日照太原路71號
銷售1: 4006-935-088銷售2: 4006-937-088客服電話: 4008-128-728

Baidu
map